(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__nats → cons(0, incr(nats))
a__pairs → cons(0, incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__head(cons(X, XS)) → mark(X)
a__tail(cons(X, XS)) → mark(XS)
mark(nats) → a__nats
mark(incr(X)) → a__incr(mark(X))
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
a__nats → nats
a__incr(X) → incr(X)
a__pairs → pairs
a__odds → odds
a__head(X) → head(X)
a__tail(X) → tail(X)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__nats → cons(0', incr(nats))
a__pairs → cons(0', incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__head(cons(X, XS)) → mark(X)
a__tail(cons(X, XS)) → mark(XS)
mark(nats) → a__nats
mark(incr(X)) → a__incr(mark(X))
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0') → 0'
mark(s(X)) → s(mark(X))
a__nats → nats
a__incr(X) → incr(X)
a__pairs → pairs
a__odds → odds
a__head(X) → head(X)
a__tail(X) → tail(X)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
a__nats → cons(0', incr(nats))
a__pairs → cons(0', incr(odds))
a__odds → a__incr(a__pairs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__head(cons(X, XS)) → mark(X)
a__tail(cons(X, XS)) → mark(XS)
mark(nats) → a__nats
mark(incr(X)) → a__incr(mark(X))
mark(pairs) → a__pairs
mark(odds) → a__odds
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0') → 0'
mark(s(X)) → s(mark(X))
a__nats → nats
a__incr(X) → incr(X)
a__pairs → pairs
a__odds → odds
a__head(X) → head(X)
a__tail(X) → tail(X)
Types:
a__nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
cons :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
0' :: 0':nats:incr:cons:odds:s:pairs:head:tail
incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
s :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
mark :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
hole_0':nats:incr:cons:odds:s:pairs:head:tail1_0 :: 0':nats:incr:cons:odds:s:pairs:head:tail
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0 :: Nat → 0':nats:incr:cons:odds:s:pairs:head:tail
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a__odds,
a__incr,
mark,
a__head,
a__tailThey will be analysed ascendingly in the following order:
a__odds = a__incr
a__odds = mark
a__odds = a__head
a__odds = a__tail
a__incr = mark
a__incr = a__head
a__incr = a__tail
mark = a__head
mark = a__tail
a__head = a__tail
(6) Obligation:
Innermost TRS:
Rules:
a__nats →
cons(
0',
incr(
nats))
a__pairs →
cons(
0',
incr(
odds))
a__odds →
a__incr(
a__pairs)
a__incr(
cons(
X,
XS)) →
cons(
s(
mark(
X)),
incr(
XS))
a__head(
cons(
X,
XS)) →
mark(
X)
a__tail(
cons(
X,
XS)) →
mark(
XS)
mark(
nats) →
a__natsmark(
incr(
X)) →
a__incr(
mark(
X))
mark(
pairs) →
a__pairsmark(
odds) →
a__oddsmark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
a__nats →
natsa__incr(
X) →
incr(
X)
a__pairs →
pairsa__odds →
oddsa__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
Types:
a__nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
cons :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
0' :: 0':nats:incr:cons:odds:s:pairs:head:tail
incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
s :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
mark :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
hole_0':nats:incr:cons:odds:s:pairs:head:tail1_0 :: 0':nats:incr:cons:odds:s:pairs:head:tail
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0 :: Nat → 0':nats:incr:cons:odds:s:pairs:head:tail
Generator Equations:
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(0) ⇔ 0'
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(+(x, 1)) ⇔ cons(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(x), 0')
The following defined symbols remain to be analysed:
a__incr, a__odds, mark, a__head, a__tail
They will be analysed ascendingly in the following order:
a__odds = a__incr
a__odds = mark
a__odds = a__head
a__odds = a__tail
a__incr = mark
a__incr = a__head
a__incr = a__tail
mark = a__head
mark = a__tail
a__head = a__tail
(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__incr.
(8) Obligation:
Innermost TRS:
Rules:
a__nats →
cons(
0',
incr(
nats))
a__pairs →
cons(
0',
incr(
odds))
a__odds →
a__incr(
a__pairs)
a__incr(
cons(
X,
XS)) →
cons(
s(
mark(
X)),
incr(
XS))
a__head(
cons(
X,
XS)) →
mark(
X)
a__tail(
cons(
X,
XS)) →
mark(
XS)
mark(
nats) →
a__natsmark(
incr(
X)) →
a__incr(
mark(
X))
mark(
pairs) →
a__pairsmark(
odds) →
a__oddsmark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
a__nats →
natsa__incr(
X) →
incr(
X)
a__pairs →
pairsa__odds →
oddsa__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
Types:
a__nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
cons :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
0' :: 0':nats:incr:cons:odds:s:pairs:head:tail
incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
s :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
mark :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
hole_0':nats:incr:cons:odds:s:pairs:head:tail1_0 :: 0':nats:incr:cons:odds:s:pairs:head:tail
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0 :: Nat → 0':nats:incr:cons:odds:s:pairs:head:tail
Generator Equations:
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(0) ⇔ 0'
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(+(x, 1)) ⇔ cons(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(x), 0')
The following defined symbols remain to be analysed:
mark, a__odds, a__head, a__tail
They will be analysed ascendingly in the following order:
a__odds = a__incr
a__odds = mark
a__odds = a__head
a__odds = a__tail
a__incr = mark
a__incr = a__head
a__incr = a__tail
mark = a__head
mark = a__tail
a__head = a__tail
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(
n76917_0)) →
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(
n76917_0), rt ∈ Ω(1 + n76917
0)
Induction Base:
mark(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(0)) →RΩ(1)
0'
Induction Step:
mark(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(+(n76917_0, 1))) →RΩ(1)
cons(mark(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0)), 0') →IH
cons(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(c76918_0), 0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
a__nats →
cons(
0',
incr(
nats))
a__pairs →
cons(
0',
incr(
odds))
a__odds →
a__incr(
a__pairs)
a__incr(
cons(
X,
XS)) →
cons(
s(
mark(
X)),
incr(
XS))
a__head(
cons(
X,
XS)) →
mark(
X)
a__tail(
cons(
X,
XS)) →
mark(
XS)
mark(
nats) →
a__natsmark(
incr(
X)) →
a__incr(
mark(
X))
mark(
pairs) →
a__pairsmark(
odds) →
a__oddsmark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
a__nats →
natsa__incr(
X) →
incr(
X)
a__pairs →
pairsa__odds →
oddsa__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
Types:
a__nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
cons :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
0' :: 0':nats:incr:cons:odds:s:pairs:head:tail
incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
s :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
mark :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
hole_0':nats:incr:cons:odds:s:pairs:head:tail1_0 :: 0':nats:incr:cons:odds:s:pairs:head:tail
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0 :: Nat → 0':nats:incr:cons:odds:s:pairs:head:tail
Lemmas:
mark(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0)) → gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0), rt ∈ Ω(1 + n769170)
Generator Equations:
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(0) ⇔ 0'
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(+(x, 1)) ⇔ cons(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(x), 0')
The following defined symbols remain to be analysed:
a__odds, a__incr, a__head, a__tail
They will be analysed ascendingly in the following order:
a__odds = a__incr
a__odds = mark
a__odds = a__head
a__odds = a__tail
a__incr = mark
a__incr = a__head
a__incr = a__tail
mark = a__head
mark = a__tail
a__head = a__tail
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__odds.
(13) Obligation:
Innermost TRS:
Rules:
a__nats →
cons(
0',
incr(
nats))
a__pairs →
cons(
0',
incr(
odds))
a__odds →
a__incr(
a__pairs)
a__incr(
cons(
X,
XS)) →
cons(
s(
mark(
X)),
incr(
XS))
a__head(
cons(
X,
XS)) →
mark(
X)
a__tail(
cons(
X,
XS)) →
mark(
XS)
mark(
nats) →
a__natsmark(
incr(
X)) →
a__incr(
mark(
X))
mark(
pairs) →
a__pairsmark(
odds) →
a__oddsmark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
a__nats →
natsa__incr(
X) →
incr(
X)
a__pairs →
pairsa__odds →
oddsa__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
Types:
a__nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
cons :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
0' :: 0':nats:incr:cons:odds:s:pairs:head:tail
incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
s :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
mark :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
hole_0':nats:incr:cons:odds:s:pairs:head:tail1_0 :: 0':nats:incr:cons:odds:s:pairs:head:tail
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0 :: Nat → 0':nats:incr:cons:odds:s:pairs:head:tail
Lemmas:
mark(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0)) → gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0), rt ∈ Ω(1 + n769170)
Generator Equations:
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(0) ⇔ 0'
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(+(x, 1)) ⇔ cons(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(x), 0')
The following defined symbols remain to be analysed:
a__head, a__incr, a__tail
They will be analysed ascendingly in the following order:
a__odds = a__incr
a__odds = mark
a__odds = a__head
a__odds = a__tail
a__incr = mark
a__incr = a__head
a__incr = a__tail
mark = a__head
mark = a__tail
a__head = a__tail
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__head.
(15) Obligation:
Innermost TRS:
Rules:
a__nats →
cons(
0',
incr(
nats))
a__pairs →
cons(
0',
incr(
odds))
a__odds →
a__incr(
a__pairs)
a__incr(
cons(
X,
XS)) →
cons(
s(
mark(
X)),
incr(
XS))
a__head(
cons(
X,
XS)) →
mark(
X)
a__tail(
cons(
X,
XS)) →
mark(
XS)
mark(
nats) →
a__natsmark(
incr(
X)) →
a__incr(
mark(
X))
mark(
pairs) →
a__pairsmark(
odds) →
a__oddsmark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
a__nats →
natsa__incr(
X) →
incr(
X)
a__pairs →
pairsa__odds →
oddsa__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
Types:
a__nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
cons :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
0' :: 0':nats:incr:cons:odds:s:pairs:head:tail
incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
s :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
mark :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
hole_0':nats:incr:cons:odds:s:pairs:head:tail1_0 :: 0':nats:incr:cons:odds:s:pairs:head:tail
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0 :: Nat → 0':nats:incr:cons:odds:s:pairs:head:tail
Lemmas:
mark(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0)) → gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0), rt ∈ Ω(1 + n769170)
Generator Equations:
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(0) ⇔ 0'
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(+(x, 1)) ⇔ cons(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(x), 0')
The following defined symbols remain to be analysed:
a__tail, a__incr
They will be analysed ascendingly in the following order:
a__odds = a__incr
a__odds = mark
a__odds = a__head
a__odds = a__tail
a__incr = mark
a__incr = a__head
a__incr = a__tail
mark = a__head
mark = a__tail
a__head = a__tail
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__tail.
(17) Obligation:
Innermost TRS:
Rules:
a__nats →
cons(
0',
incr(
nats))
a__pairs →
cons(
0',
incr(
odds))
a__odds →
a__incr(
a__pairs)
a__incr(
cons(
X,
XS)) →
cons(
s(
mark(
X)),
incr(
XS))
a__head(
cons(
X,
XS)) →
mark(
X)
a__tail(
cons(
X,
XS)) →
mark(
XS)
mark(
nats) →
a__natsmark(
incr(
X)) →
a__incr(
mark(
X))
mark(
pairs) →
a__pairsmark(
odds) →
a__oddsmark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
a__nats →
natsa__incr(
X) →
incr(
X)
a__pairs →
pairsa__odds →
oddsa__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
Types:
a__nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
cons :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
0' :: 0':nats:incr:cons:odds:s:pairs:head:tail
incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
s :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
mark :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
hole_0':nats:incr:cons:odds:s:pairs:head:tail1_0 :: 0':nats:incr:cons:odds:s:pairs:head:tail
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0 :: Nat → 0':nats:incr:cons:odds:s:pairs:head:tail
Lemmas:
mark(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0)) → gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0), rt ∈ Ω(1 + n769170)
Generator Equations:
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(0) ⇔ 0'
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(+(x, 1)) ⇔ cons(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(x), 0')
The following defined symbols remain to be analysed:
a__incr
They will be analysed ascendingly in the following order:
a__odds = a__incr
a__odds = mark
a__odds = a__head
a__odds = a__tail
a__incr = mark
a__incr = a__head
a__incr = a__tail
mark = a__head
mark = a__tail
a__head = a__tail
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__incr.
(19) Obligation:
Innermost TRS:
Rules:
a__nats →
cons(
0',
incr(
nats))
a__pairs →
cons(
0',
incr(
odds))
a__odds →
a__incr(
a__pairs)
a__incr(
cons(
X,
XS)) →
cons(
s(
mark(
X)),
incr(
XS))
a__head(
cons(
X,
XS)) →
mark(
X)
a__tail(
cons(
X,
XS)) →
mark(
XS)
mark(
nats) →
a__natsmark(
incr(
X)) →
a__incr(
mark(
X))
mark(
pairs) →
a__pairsmark(
odds) →
a__oddsmark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
a__nats →
natsa__incr(
X) →
incr(
X)
a__pairs →
pairsa__odds →
oddsa__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
Types:
a__nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
cons :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
0' :: 0':nats:incr:cons:odds:s:pairs:head:tail
incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
s :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
mark :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
hole_0':nats:incr:cons:odds:s:pairs:head:tail1_0 :: 0':nats:incr:cons:odds:s:pairs:head:tail
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0 :: Nat → 0':nats:incr:cons:odds:s:pairs:head:tail
Lemmas:
mark(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0)) → gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0), rt ∈ Ω(1 + n769170)
Generator Equations:
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(0) ⇔ 0'
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(+(x, 1)) ⇔ cons(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(x), 0')
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0)) → gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0), rt ∈ Ω(1 + n769170)
(21) BOUNDS(n^1, INF)
(22) Obligation:
Innermost TRS:
Rules:
a__nats →
cons(
0',
incr(
nats))
a__pairs →
cons(
0',
incr(
odds))
a__odds →
a__incr(
a__pairs)
a__incr(
cons(
X,
XS)) →
cons(
s(
mark(
X)),
incr(
XS))
a__head(
cons(
X,
XS)) →
mark(
X)
a__tail(
cons(
X,
XS)) →
mark(
XS)
mark(
nats) →
a__natsmark(
incr(
X)) →
a__incr(
mark(
X))
mark(
pairs) →
a__pairsmark(
odds) →
a__oddsmark(
head(
X)) →
a__head(
mark(
X))
mark(
tail(
X)) →
a__tail(
mark(
X))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
a__nats →
natsa__incr(
X) →
incr(
X)
a__pairs →
pairsa__odds →
oddsa__head(
X) →
head(
X)
a__tail(
X) →
tail(
X)
Types:
a__nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
cons :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
0' :: 0':nats:incr:cons:odds:s:pairs:head:tail
incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
nats :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__odds :: 0':nats:incr:cons:odds:s:pairs:head:tail
a__incr :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
s :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
mark :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
a__tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
pairs :: 0':nats:incr:cons:odds:s:pairs:head:tail
head :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
tail :: 0':nats:incr:cons:odds:s:pairs:head:tail → 0':nats:incr:cons:odds:s:pairs:head:tail
hole_0':nats:incr:cons:odds:s:pairs:head:tail1_0 :: 0':nats:incr:cons:odds:s:pairs:head:tail
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0 :: Nat → 0':nats:incr:cons:odds:s:pairs:head:tail
Lemmas:
mark(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0)) → gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0), rt ∈ Ω(1 + n769170)
Generator Equations:
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(0) ⇔ 0'
gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(+(x, 1)) ⇔ cons(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(x), 0')
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0)) → gen_0':nats:incr:cons:odds:s:pairs:head:tail2_0(n76917_0), rt ∈ Ω(1 + n769170)
(24) BOUNDS(n^1, INF)